
Journal of Computational Physics171,132–150 (2001)

doi:10.1006/jcph.2001.6778, available online at http://www.idealibrary.com on

An Immersed-Boundary Finite-Volume Method
for Simulations of Flow in Complex Geometries

Jungwoo Kim,∗,† Dongjoo Kim,∗,† and Haecheon Choi∗,†
∗School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea;

and†National CRI Center for Turbulence and Flow Control Research, Institute of Advanced
Machinery and Design, Seoul National University, Seoul 151-742, Korea

E-mail: choi@socrates.snu.ac.kr

Received July 17, 2000; revised February 14, 2001

A new immersed-boundary method for simulating flows over or inside complex
geometries is developed by introducing a mass source/sink as well as a momentum
forcing. The present method is based on a finite-volume approach on a staggered
mesh together with a fractional-step method. Both momentum forcing and mass
source are applied on the body surface or inside the body to satisfy the no-slip
boundary condition on the immersed boundary and also to satisfy the continuity for
the cell containing the immersed boundary. In the immersed-boundary method, the
choice of an accurate interpolation scheme satisfying the no-slip condition on the
immersed boundary is important because the grid lines generally do not coincide with
the immersed boundary. Therefore, a stable second-order interpolation scheme for
evaluating the momentum forcing on the body surface or inside the body is proposed.
Three different flow problems (decaying vortices and flows over a cylinder and a
sphere) are simulated using the immersed-boundary method proposed in this study
and the results agree very well with previous numerical and experimental results,
verifying the accuracy of the present method.c© 2001 Academic Press
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1. INTRODUCTION

The ability to handle complex geometries has been one of the main issues in computational
fluid dynamics because most engineering problems have complex geometries. So far, two
different approaches to simulating complex flow have been taken: the unstructured grid
method and the immersed-boundary method. In the latter method, a body in the flow field is
considered a kind of momentum forcing in the Navier–Stokes equations rather than a real
body, and therefore flow over a complex geometry can be easily handled with orthogonal
(Cartesian or cylindrical) grids which generally do not coincide with the body surface. The
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main advantages of the immersed-boundary method are memory and CPU savings and
easy grid generation compared to the unstructured grid method. Even moving-boundary
problems can be handled with the immersed-boundary method without regenerating grids
in time, unlike the unstructured grid method.

An immersed-boundary method using momentum forcing was presented by Peskin [1],
who simulated the blood flow in heart valves. Goldsteinet al. [2] and Saiki and Biringen
[3] employed feedback forcing to represent a solid body, but feedback forcing induced
spurious oscillations and restricted the computational time step associated with numerical
stability. For example, Goldsteinet al. [2] used a very small time step equivalent to a CFL
(Courant–Friedrichs–Lewy) number ofO(10−3–10−2) when they simulated the start-up
flow around a circular cylinder. Recently, Mohd-Yusof [4] suggested a different approach
to evaluating the momentum forcing in a spectral method, and his method does not require
a smaller computational time step, which is an important advantage of this method over
previous methods.

Fadlunet al.[5] applied the approach of Mohd-Yusof [4] to a finite-difference method on
a staggered grid and showed that the discrete-time forcing suggested by Mohd-Yusof [4] is
more efficient than feedback forcing for three-dimensional flow problems. However, there
is a difference between the approaches of Fadlunet al. [5] and Mohd-Yusof [4]. In Fadlun
et al. [5], the velocity at the first grid point external to the body is obtained bylinearly
interpolating the velocity at the second grid point (which is obtained by directly solving
the Navier–Stokes equations) and the velocity at the body surface, which conceptually
corresponds to applying the momentum forcing inside the flow field. On the other hand,
momentum forcing is applied only on the body surface or inside the body in Mohd-Yusof
[4]. The interpolation direction (i.e., the direction to the second grid point) taken by Fadlun
et al. [5] is either the streamwise or the transverse direction, but the choice of interpolation
direction is arbitrary. When a bilinear (2-D) interpolation is used to avoid the arbitrariness,
however, the use of the approximate factorization scheme combined with a tridiagonal
matrix solver may require numerical iteration, which increases the CPU time, especially
for three-dimensional flow.

Recently, Yeet al. [6] proposed a different approach on a nonstaggered grid called a
Cartesian grid method, which does not use the concept of momentum forcing. In this method,
a control volume near the immersed boundary is re-formed into a body-fitted trapezoidal
shape by discarding the solid part of the cell and adding the neighboring cells. To accurately
discretize the governing equations at the cell containing the immersed boundary, they also
presented a new interpolation procedure that preserves the second-order spatial accuracy.
However, because the stencil of the trapezoidal boundary cell is different from that of the
regular cell, an iteration technique is applied to solve the discretized momentum equations
at each computational time step.

The objective of the present study is to develop a new immersed-boundary method that
introduces both the momentum forcing and mass source/sink to properly represent the
immersed body. The present method is based on a finite-volume approach on a staggered
grid together with a fractional-step method. The discrete-time momentum forcing as in
Mohd-Yusof [4] and the mass source/sink are applied only on the body surface or inside the
body. A second-order-accurate interpolation scheme for evaluating the momentum forcing
is proposed in this study, which is numerically stable irrespective of the relative position
between the grid and the immersed-boundary. It will be also shown that introduction of the
mass source/sink is necessary to obtain physical solutions and enhance accuracy. To verify
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the accuracy of the present method, three different flow problems (decaying vortices and
flows over a circular cylinder and a sphere) are simulated and the results are shown in this
paper.

2. NUMERICAL METHOD

2.1. Governing Equations and Time Integration

In the present study, the discrete-time momentum forcing,fi , as in Mohd-Yusof [4] is
applied to satisfy the no-slip condition on the immersed boundary. The momentum forcing
is applied only on the immersed boundary or inside the body. The forcing points are located
in a staggered fashion like the velocity components defined on a staggered grid. When the
forcing point coincides with the immersed boundary, we apply momentum forcing so that
the velocity is zero at that point (seeU1 andU2 in Fig. 1a andV3 andV4 in Fig. 1b). On
the other hand, when the forcing point exists inside the body, we apply momentum forcing
so that the velocity (V1 or U3) is the opposite of that (v2 or u4) outside the body for both
the wall-normal and tangential velocity components, respectively, as shown in Figs. 1a
and 1b. However, becauseU1 = U2 = 0 (no-slip) andV1 and v2 come into the cell (as
shown in Fig. 1a), the cell containing the immersed boundary does not satisfy the mass
conservation. Therefore, we introduce a mass source/sink,q, for the cell containing the
immersed boundary to satisfy the mass conservation. The mass source/sink is applied to
the cell center on the immersed boundary or inside the body.

The governing equations for unsteady incompressible viscous flow are

∂ui

∂t
+ ∂ui u j

∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui

∂xj ∂xj
+ fi , (1)

∂ui

∂xi
− q = 0, (2)

wherexi ’s are the Cartesian coordinates,ui ’s are the corresponding velocity components,p
is the pressure,fi ’s are the momentum forcing components defined at the cell faces on the

FIG. 1. Velocity vectors near the wall on a staggered mesh: (a) wall-normal velocity; (b) tangential velocity.
The shaded area denotes the body. In this figure, we consider a very simple situation for clarity such thaty2 = h.
More general situations are considered in the following figures.
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immersed boundary or inside the body, andq is the mass source/sink defined at the cell center
on the immersed boundary or inside the body. All the variables are nondimensionalized by
the characteristic velocity and length scales, and Re is the Reynolds number.

The time-integration method used to solve Eqs. (1) and (2) is based on a fractional-step
method where a pseudo-pressure is used to correct the velocity field so that the continuity
equation is satisfied at each computational time step. In this study, we use a second-order
semi-implicit time advancement scheme (a third-order Runge–Kutta method (RK3) for the
convection terms and a second-order Crank–Nicolson method for the diffusion terms)

ûk
i − uk−1

i

1t
= αkL

(
ûk

i

)+ αkL
(
uk−1

i

)− 2αk
∂pk−1

∂xi
− γk N

(
uk−1

i

)− ρk N
(
uk−2

i

)+ f k
i ,

(3)

∂2φk

∂xi ∂xi
= 1

2αk1t

(
∂ûk

i

∂xi
− qk

)
, (4)

uk
i = ûk

i − 2αk1t
∂φk

∂xi
, (5)

pk = pk−1+ φk − αk1t

Re

∂2φk

∂xj ∂xj
, (6)

where

L(ui ) = 1

Re

∂2ui

∂xj ∂xj
,

N(ui ) = ∂ui u j

∂xj
,

ûi is the intermediate velocity, andφ is the pseudo-pressure. Also,1t andk are the compu-
tational time step and substep’s index, respectively, andαk, γk, andρk are the coefficients
of RK3 (α1 = 4/15, γ1 = 8/15, ρ1 = 0;α2 = 1/15, γ2 = 5/12, ρ2 = −17/60;α3 = 1/6,
γ3 = 3/4, ρ3 = −5/12).

In the present study, the immersed-boundary method is applied to a cylindrical coordinate
system as well as a Cartesian one. In the cylindrical coordinate system, the time-integration
method is based on the method of Akselvoll and Moin [7] to enhance computational effi-
ciency.

2.2. Momentum Forcing and Interpolation for the Velocity

To obtainûk
i from Eq. (3), the momentum forcingf k

i must be determined in advance
such thatuk

i satisfies the no-slip condition on the immersed boundary. Becauseuk
i = ûk

i −
2αk1t ∂φ

k

∂xi
= ûk

i + ϑ(1t2), f k
i is determined such that̂uk

i satisfies the no-slip condition

instead ofuk
i , which does not affect the overall second-order temporal accuracy. (The

appropriateness of having the boundary condition accurate toϑ(1t2) for the fractional-step
method was shown in Kim and Moin [8].)

When Eq. (1) is provisionally discretized explicitly in time (RK3 for the convection terms
and forward Euler method for the diffusion terms) to derive the momentum forcing value,
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we have

ũk
i − uk−1

i

1t
= 2αkL

(
uk−1

i

)− 2αk
∂pk−1

∂xi
− γk N

(
uk−1

i

)− ρk N
(
uk−2

i

)+ f k
i . (7)

Rearranging Eq. (7) results in the following equation forf k
i at a forcing point,

f k
i =

Uk
i − uk−1

i

1t
− 2αkL

(
uk−1

i

)+ 2αk
∂pk−1

∂xi
+ γk N

(
uk−1

i

)+ ρk N
(
uk−2

i

)
, (8)

whereUk
i is the velocity that we want to obtain at a forcing point by applying momentum

forcing. In the following,ũi or ũk
i (6=ûk

i in Eq. (3)) indicates the velocity at a grid point
nearby the forcing point updated from Eq. (7) withf k

i = 0 to determineUk
i using the linear

or bilinear interpolation (see below).
In case of the no-slip wall,Uk

i is zero when the forcing point coincides with the immersed
boundary. However, in general the forcing point exists not on the immersed boundary but
inside the body, and thus an interpolation procedure for the velocityUk

i is required. In the
present study, second-order linear and bilinear interpolations are used, and Figs. 2–4 show
the schematic diagrams for the interpolation scheme used in this study.

Figures 2a and 2b show examples of the use of bilinear and linear interpolations, respec-
tively. In Fig. 2a,P1 is the point that we want to satisfy the no-slip boundary condition, and
U1, ũ2, ũ3, andũ4 are four different velocity components surroundingP1. In the present
study, P1 is defined as the cross-sectional point between the immersed boundary and the
wall-normal line passing through the point whereU1 is defined. When all the surrounding
velocity components exceptU1 exist outside the body as shown in Fig. 2a, the unknown
U1 is obtained from a bilinear interpolation. However, when the bilinear interpolation is
not proper because the unknownU1 is coupled with another unknownU2 (see Fig. 2b),
a linear interpolation is used to obtainU1 from ũ4 and the no-slip velocity atP2, where
P2 is the cross-sectional point between the immersed boundary and the line connectingU1

andũ4.

FIG. 2. Schematic diagram for the interpolation scheme: (a) bilinear interpolation; (b) linear interpolation.
The shaded area denotes the body.
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FIG. 3. Linear interpolation scheme for thex-component velocity in case of the no-slip wall: (a) 0< h ≤ yA;
(b) h > yA. Here, C is the forcing point, andC′P2 = P2C. A and B are, respectively, the first and second velocity
points (center of the cell face) outside the body surface. The shaded area denotes the body.

We now explain the interpolation scheme more specifically in Figs. 3 and 4. First, in
Fig. 2b, we consider the following second-order linear interpolation (Fig. 3),

Uk
1 = −ũk

C′ , (9)

whereC′P2 = P2C. For 0< h ≤ yA (Fig. 3a),ũk
c′ is obtained from a linear interpolation

betweenũk
A and the no-slip condition at the pointP2, whereas foryA < h < yB (Fig. 3b),

ũk
C is obtained from̃uk

A andũk
B. That is,

Uk
1 =

−
h
yA

ũk
A for 0< h ≤ yA

− (yB − h)ũk
A+(h− yA)ũk

B
yB−yA

for yA < h < yB.
(10)

The same scheme is applied to they-component velocity.

FIG. 4. Bilinear interpolation scheme in case of the no-slip wall. The shaded area denotes the body.
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As an alternative, one may consider a simple linear interpolation such asUk
1 = − h

yA
ũk

A

even foryA < h < yB. However, in this case,h/yA may have a very large value according
to the grid distribution in complex geometries and one may fail to get a stable solution due
to a nonphysically large value ofUk

1 . (For example, our computation using a simple linear
interpolation,Uk

1 = − h
yA

ũk
A, indeed diverged withh/yA = 100 for the decaying-vortex

problem in Section 3.1.)
Next, in the case of Fig. 2a, the second-order bilinear interpolation used in this study is

(see Fig. 4)

Uk
1 = −

[
α(1− β)ũk

2 + (1− α)(1− β)ũk
3 + (1− α)βũk

4

]/
αβ, (11)

whereα = (x3− xP1)/(x3− x1), β = (y2− yP1)/(y2− y1), and the no-slip condition at
the pointP1 is used. A similar scheme is also applied to they-component velocity.

With this interpolation scheme (Eqs. (10) and (11), respectively, for cases of Figs. 2b
and 2a), we have not encountered any unstable solutions for the flow problems investigated
in this study. The interpolation scheme described above can be easily extended to three
dimensions as shown in Fig. 5. In Fig. 5a,U1 is obtained from seven neighboring velocities,
whereasU1 is obtained from three neighboring velocities in Fig. 5b. On the other hand, in
Fig. 5c,U1 is obtained by the same interpolation method as shown in the two-dimensional
case, Eq. (10). The formula for each case can be easily derived and thus is not given in this
paper.

2.3. Mass Source and Continuity Equation

The procedure of obtaining the mass sourceqk in Eq. (4) is explained in this section.
Consider the two-dimensional cell shown in Fig. 6, whereuk

1 andvk
1 are the velocity com-

ponents inside the body anduk
2 andvk

2 are those outside the body. For the triangular cell
containing only fluid (4PB PC PD), the continuity reads

uk
21y+ vk

21x = 0. (12)

Meanwhile, for the rectangular cell containing both the body and the fluid (uPAPB PC PD),

the continuity equation becomes

uk
21y+ vk

21x = uk
11y+ vk

11x + qk1x1y. (13)

From Eqs. (12) and (13), the mass sourceqk is obtained as

qk = − uk
1

1x
− vk

1

1y
. (14)

Note thatuk
1 andvk

1 are unknown until Eqs. (4) and (5) are solved and thus we useûk
1

and v̂k
1 instead ofuk

1 andvk
1 without losing the overall temporal accuracy becauseuk

i =
ûk

i + ϑ(1t2). Therefore, the mass sourceqk is defined as

qk = − ûk
1

1x
− v̂k

1

1y
= 1

1x1y

(−ûk
11y− v̂k

11x
)
. (15)
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FIG. 5. Schematic diagram for the interpolation scheme in three dimension: (a) three-dimensional extension
of bilinear interpolation (P0 locates inside the cube); (b) bilinear interpolation (P1 locates onuABCD); (c) linear
interpolation (P2 locates onAB). Here,Ui andui locate inside and outside the body, respectively, ands represents
the neighboring velocity used in obtainingU1.

Note thatûk
1 andv̂k

1 in Eq. (15) are obtained from Eq. (3) with nonzerof k
i . (The method of

obtaining f k
i is already presented in Section 2.2.)

Generally, the mass sourceqk for a three-dimensional cell can be expressed as

qk = 1

1V

∑
i

ωûk · n1Si , (16)

where1V is the cell volume,1Si is the area of each cell face, andn is the unit normal
vector outward at each cell face. Here,ω is defined as 1 for the cell face off k

i 6= 0 and
zero elsewhere. Note thatqk1V corresponds to the sum of the volume flux only through
the cell faces with nonzero forcings, and two neighboring cells sharing a common cell face
have the same value of volume flux but with opposite signs (see Fig. 6). Therefore, the total
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FIG. 6. Mass conservation for a cell containing the immersed boundary.

sum of the volume fluxes due to the mass sources over the computation domain is zero and
the global mass conservation is satisfied. Note that in the correction step (Eq. (5)),uk

i ’s are
updated with the pseudo-pressure obtained from Eq. (4). Near the immersed boundary, the
pseudo-pressures with and withoutqk are fundamentally different from each other (as is
evident from the example shown in Fig. 1a), and thus the velocitiesuk

i near the boundary
with and withoutqk will also be different from each other.

In Fig. 6, we have considered the case where the grid points,PD and PB, fall on the
immersed boundary, which is not common in general cases. However, the analysis shown
above is still valid even in general cases because the volume flux fromPD PC, for example,
is considered asvk

21x in the framework of the immersed-boundary method even if the point
PD exists inside the immersed body. One should try a method similar to that of Yeet al.
[6] or an unstructured grid method to exactly satisfy the mass and momentum fluxes near
the body surface. However, that kind of method inevitably introduces an iterative process
to solve the momentum equation at each computational time step, which may increase the
CPU time especially for three-dimensional flow. In Sections 3.1 and 3.2, we show that
the present approach of introducingq clearly enhances the quality of the solution near the
immersed boundary.

3. NUMERICAL EXAMPLES

3.1. Decaying Vortices

The temporal and spatial accuracy of the present immersed boundary method is verified
by simulating the two-dimensional unsteady flow such as

u(x, y, t) = −cosπx sinπye−2π2t/Re, (17)

v(x, y, t) = sinπx cosπy e−2π2t/Re, (18)

p(x, y, t) = −1

4
(cos 2πx + cos 2πy) e−4π2t/Re. (19)
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FIG. 7. Grid system, computational domain, and immersed boundary for the decaying vortices: (a) an im-
mersed boundary parallel to the grid lines; (b) an immersed boundary at an oblique angle of 45◦ with respect to
the grid lines.

Figure 7 shows the grid system, computational domain (−1.5≤ x, y ≤ 1.5), and
immersed boundary (thick lines). The immersed boundary (thick lines atx = ±1, y = ±1,
respectively) in Fig. 7a is parallel to the grid lines where the linear interpolation (Eq. (10))
is used. On the other hand, the immersed boundary (thick lines at|x| + |y| = 1) in Fig. 7b
is oblique at 45◦ with respect to the grid lines where the bilinear interpolation (Eq. (11)) is
used. The momentum forcing is applied at the points outside the immersed boundary and we
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are concerned with the solution inside. Note that near the immersed boundary in Fig. 7a, the
grid size is intentionally changed so that the tangential velocity to the immersed boundary
is interpolated as in Fig. 3a and the normal velocity as in Fig. 3b. Meanwhile, in Fig. 7b, the
grid size remains uniform over the computational domain. For both cases of Figs. 7a and
7b, four different sizes of Cartesian grids are used and the corresponding numbers of grid
points in each direction are 25 (17), 49 (33), 97 (65), and 193 (129), respectively. Here, the
numbers of grid points in parentheses denote those located in−1.0≤ x, y ≤ 1.0. Compu-
tations are performed by varying the mesh size but keeping the maximum CFL number at
t = 0 constant. The initial velocity condition att = 0 and the velocities at the boundaries
of the computational domain in time are provided from the exact solution. For all the com-
putations, the Reynolds number (Re= U L/µ) is prescribed to be 10, whereU is the initial
maximum velocity andL is the size of a vortex.

Figure 8 shows the variation of the maximum error inu inside the immersed boundary
with the mesh refinement. The errors are obtained for three cases: with both the momentum
forcing and the mass source, with the momentum forcing only, and without the momentum
forcing (i.e., without the immersed-boundary method), respectively. It is shown that the
errors with the mass source are much smaller than those without the mass source and are
comparable to those obtained without using the immersed-boundary method. From this
simulation, it is verified that the linear and bilinear interpolations proposed in the present
study are second-order accurate in space, and introducing the mass source enhances the
quality of the solution.

3.2. Flow over a Circular Cylinder

Flow over a circular cylinder is simulated to verify that the present immersed-boundary
method predicts flow phenomena such as the separation and vortex shedding very well.
The size of the computational domain is 70d × 100d, whered denotes the diameter of the
cylinder. Computations are performed at two different Reynolds numbers (40 and 100) based
on the freestream velocityu∞ and diameter with the maximum CFL number of 1.5. The
numbers of grid points are 331× 193 in the streamwise (x) and transverse (y) directions,
respectively, and 30 grid points in each direction are uniformly distributed within the cylinder
diameter. Grids are distributed in the surface-normal direction above the cylinder surface
such that about six to eight grid points are located inside the boundary layer at 60◦ ≤ θ ≤ 90◦

(Re= 100), whereθ is the angle from the stagnation point. Here, the boundary layer
thickness is estimated as the position where the surface-parallel velocity is maximum at
eachθ . A Dirichlet boundary condition (u/u∞ = 1, v = 0) is used at the inflow and farfield
boundaries, and a convective boundary condition (∂ui /∂t + c∂ui /∂x = 0) is used for the
outflow boundary wherec is the space-averaged streamwise velocity at the exit.

Table I shows that the present drag and lift coefficients agree well with the computational
result obtained from a body-fitted mesh (Parket al. [9]), whereCD is the drag coefficient
(time-averaged value in case of Re= 100) andC′L is the amplitude of lift-coefficient
fluctuations (maximum deviation from the time-averaged value) at Re= 100. In this study,
the drag and lift forces are obtained by directly integrating all the momentum forcing values
applied inside the body. A useful discussion on how to evaluate the force on a solid body
in conjunction with the immersed-boundary method can be found in Lai and Peskin [10].
The Strouhal number (S t= f d/u∞) is also in excellent agreement with those of Park
et al. [9] and Williamson [11], wheref is the shedding frequency.
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FIG. 8. Maximum error inu at t = 0.3 : (a) case of Fig. 7a (linear interpolation); (b) case of Fig. 7b (bilinear
interpolation). ——, momentum forcing with the mass source;−−−, momentum forcing without the mass
source;· · · ·, without the immersed-boundary method.
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TABLE I

Simulation Results for Flow over a Circular Cylinder

Re CD C′L St

Present 40 1.51
100 1.33 0.32 0.165

Parket al. [9] 40 1.51
100 1.33 0.33 0.165

Williamson [11] 100 0.164

FIG. 9. Velocity vectors near the stagnation point of a circular cylinder. (a) Re= 40: without the mass source
(u1 = 0.0066, u2 = −0.0240, u3 = −0.0030, v1 = 0.0271, v2 = −0.021); with the mass source (u1 = 0.0274,
u2 = 3.84× 10−8, u3 = −0.0238, v1 = 0.0242, v2 = −0.0189); (b) Re= 100: without the mass source (u1 =
0.0110, u2 = −0.0415, u3 = −0.0054, v1 = 0.0464, v2 = −0.0361); with the mass source (u1 = 0.0465, u2 =
−6.368×−10−9, u3 = −0.0408, v1 = 0.0414, v2 = −0.0322). The velocities at Re= 100 are the time-averaged
values.
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Figure 9 shows the velocity vectors near the stagnation point of a circular cylinder for
two different cases: with and without the mass source, respectively. The arrows at the
cell faces denote the velocity vectors. It is clear for both Re= 40 and 100 that without
the mass source the wall-normal velocities near the stagnation point(u2) have relatively
large negative (and thus nonphysical) values, whereas with the mass source they are nearly
zero. Furthermore, without the mass source, the negative value ofu2 becomes larger as the
Reynolds number increases, indicating that introducing the mass source is more necessary
for obtaining realistic solutions at higher Reynolds number. Also, without the mass source,
CD = 1.28 andC′L = 0.28 at Re= 100, which are smaller than those with the mass source
(see Table I).

Figure 10 shows the pressure coefficient and spanwise vorticity variations along the
cylinder surface at Re= 40 and 100, together with the numerical results of Parket al. [9].

FIG. 10. Flow variables along the cylinder surface at Re= 40 and 100: (a) wall pressure coefficient; (b) wall
spanwise vorticity.•, with the mass source (present study); +, without the mass source (present study); ——, Park
et al. [9]. TheCp andωz at Re= 100 are the time-averaged values.
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FIG. 11. Spanwise vorticity contours near a circular cylinder: (a) Re= 40; (b) Re= 100. For Re= 100,
instantaneous vorticity contours are drawn.

Here, a proper interpolation scheme for measuring the pressure and vorticity at the cylinder
surface is required because the grid lines generally do not coincide with the immersed
boundary. In the present study, the pressure at the surface is obtained from the nearest cell
center pressure outside the body by assuming that the wall-normal derivative of the pressure
is zero at the surface. The wall vorticity is obtained from the velocity tangential to the surface
at the nearest cell center outside the body. This interpolation is similar to a conventional
approach used in a body-fitted staggered mesh. It is shown in Fig. 10 that the presentCp with
the mass source agrees well with that of Parket al.[9], and the difference between the results
with and without the mass source becomes large with increasing Reynolds number. Also, the
present immersed-boundary method reasonably captures the vorticity at the cylinder surface.
We have confirmed that the magnitude of mass source is also large at 60◦ ≤ θ ≤ 90◦, where
the difference between the results with and without the mass source is large.

Figure 11 shows the spanwise vorticity contours for Re= 40 and 100. The flow is sym-
metric about the streamwise axis at Re= 40, whereas vortex shedding takes place at Re=
100, indicating that the vorticity field is well captured by the present immersed-boundary
method.

3.3. Flow over a Sphere

As an example of three-dimensional flow, laminar flow over a sphere is simulated at three
different Reynolds numbers (Re= 100, 250, and 300), each of which represents one of three

FIG. 12. Coordinate and grid systems near a sphere for Re= 100 and 250.
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laminar flow regimes: steady axisymmetric flow (Re≤ 200), steady nonaxisymmetric flow
(210≤ Re≤ 270), and unsteady flow (Re≥ 280). The Reynolds number is based on the
uniform inlet velocityu∞ and the diameter of the sphered. In this study, we use the
cylindrical coordinate system rather than the Cartesian one, because the former requires
fewer grid points than the latter by fitting the grids to the sphere surface in the planes
perpendicular to the streamwise direction. The coordinate and grid systems near a sphere
are shown in Fig. 12. The computational domain used is−15d ≤ x ≤ 15d, 0≤ r ≤ 15d,
and 0≤ θ ≤ 2π . The numbers of grid points are 145(x)× 61(r )× 40(θ) and 289(x)×
161(r )× 40(θ), respectively, for steady and unsteady flows.

Table II shows the results of simulations together with the previous numerical results
of Fornberg [12], Johnson and Patel [13], and Constantinescu and Squires [14] in which

FIG. 13. Flow variables along the sphere surface at Re= 100: (a) wall pressure coefficient; (b) wall azimuthal
vorticity. •, Present study; ——, Johnson [16].
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TABLE II

Simulation Results for Flow over a Sphere

Re CD CL St

Present 100 1.087
250 0.701 0.059
300 0.657 0.067 0.134

Fornberg [12] 100 1.085
Johnson and Patel [13] 250 0.70 0.062

300 0.656 0.069 0.137
Constantinescu and Squires [14] 250 0.70 0.062

300 0.655 0.065 0.136

body-fitted grids were used. The drag coefficientCD at Re= 100 agrees very well with that
of Fornberg [12]. The drag and lift (CL ) coefficients at Re=250 and 300 are also in excellent
agreement with those of Johnson and Patel [13] and Constantinescu and Squires [14], where
CD andCL are the time-averaged values for unsteady flow (Re= 300). The nonzero lift
coefficient at Re= 250 indicates that the flow loses the axisymmetry but maintains the
steadiness. The present Strouhal number at Re= 300 is in reasonable agreement with
those of Johnson and Patel [13] and Constantinescu and Squires [14], but all the numerical
results (present study, [13, 14]) are smaller than the experimental result (St= 0.15–0.16)
of Sakamoto and Haniu [15].

We have also simulated flow over a sphere at Re= 100 and 250 in the Cartesian co-
ordinate system instead of the cylindrical one. In the Cartesian coordinate, the sphere is
considered a complex geometry in three dimensions, and thus a three-dimensional extension
of the interpolation scheme explained in Section 2.2 is used to describe the sphere surface.
The simulation result shows that the drag and lift coefficients (CD = 1.088 at Re= 100;
CD = 0.706,CL = 0.061 at Re= 250) agree well with those in the cylindrical coordinate.
However, the number of grid points required is much larger(145(x)× 113(y)× 113(z))

FIG. 14. Time-averaged streamwise velocity along thex-axis at Re= 300:——, present study;−−−,
Johnson and Patel [13].
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FIG. 15. Vortical structures at (a) Re= 250 and (b) Re= 300. For Re= 300, an instantaneous field is drawn.

than that in the cylindrical coordinate(145(x)× 61(r )× 40(θ)), as expected. Therefore,
all the simulation results for flow over a sphere presented in this section are those performed
in the cylindrical coordinate system.

Figure 13 shows the pressure coefficient and the azimuthal vorticity variations along
the sphere surface at Re= 100, where the interpolation method used for evaluating flow
variables at the surface is the same as that for the flow over a cylinder. Comparison with
the results using a body-fitted mesh (Johnson [16]) indicates that the present immersed-
boundary method represents the spherical surface very well. Figure 14 shows the time-
averaged streamwise velocity along thex-axis at Re= 300 together with that of Johnson
and Patel [13]. The streamwise velocity and the size of the recirculation region(1.36d)
agree very well with those of Johnson and Patel [13].

Figure 15 shows three-dimensional vortical structures at Re= 250 and 300. Here, the
vortical surfaces are identified using the method of Jeong and Hussain [17]. At Re= 250, the
flow is steady nonaxisymmetric, whereas at Re= 300 the flow is unsteady and the vortices
are asymmetrically shed. This behavior is nearly the same as that shown in Johnson and
Patel [13], indicating that the present method accurately captures the three-dimensional
vorticity field.

4. SUMMARY

In this study, a new immersed-boundary method is presented by introducing the mass
source/sink as well as the momentum forcing. The present method is based on a finite-
volume approach on a staggered mesh together with a fractional-step method. The momen-
tum forcing and the mass source/sink are applied on the body surface or inside the body to
satisfy the no-slip boundary condition on the immersed boundary and the continuity for the
cell containing the immersed boundary, respectively.

A new second-order linear or bilinear interpolation scheme is developed to satisfy the
no-slip velocity on the immersed boundary, which is numerically stable regardless of the
relative position between the grid and the immersed boundary.
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Three different flow problems (decaying vortices and flows over a cylinder and a sphere)
are simulated with the immersed-boundary method proposed in this study. It is shown
that without introducing the mass source/sink near the immersed boundary a nonphysical
solution is obtained, especially near the stagnation point of flow, and the numerical solution
deteriorates more as the Reynolds number increases. The simulation results with both the
momentum forcing and mass source/sink agree very well with the previous numerical and
experimental results, indicating the validity and accuracy of the present immersed-boundary
method.
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